Nondifferentiable multiobjective programming under generalized dI-invexity
نویسندگان
چکیده
In this paper, we are concerned with a nondifferentiable multiobjective programming problem with inequality constraints. We introduce four new classes of generalized convex functions by combining the concepts of weak strictly pseudoinvex, strong pseudoinvex, weak quasi invex, weak pseudoinvex and strong quasi invex functions in Aghezzaf and Hachimi [Numer. Funct. Anal. Optim. 22 (2001) 775], d-invex functions in Antczak [Europ. J. Oper. Res. 137 (2002) 28] and univex functions in Bector et al. [Univex functions and univex nonlinear programming, Proc. Admin. Sci. Assoc. Canada, 1992, p. 115]. By utilizing the new concepts, we derive a Karush–Kuhn–Tucker sufficient optimality condition and establish Mond–Weir type and general Mond–Weir type duality results for the nondifferentiable multiobjective programming problem. 2003 Elsevier B.V. All rights reserved.
منابع مشابه
Duality for the class of a multiobjective problem with support functions under $K$-$G_f$-invexity assumptions
In this article, we formulate two dual models Wolfe and Mond-Weir related to symmetric nondifferentiable multiobjective programming problems. Furthermore, weak, strong and converse duality results are established under $K$-$G_f$-invexity assumptions. Nontrivial examples have also been depicted to illustrate the theorems obtained in the paper. Results established in this paper unify...
متن کاملNonsmooth Multiobjective Fractional Programming with Generalized Invexity
In this paper, we consider nonsmooth multiobjective fractional programming problems involving locally Lipschitz functions. We introduce the property of generalized invexity for fractional function. We present necessary optimality conditions, sufficient optimality conditions and duality relations for nonsmooth multiobjective fractional programming problems, which is for a weakly efficient soluti...
متن کاملEfficiency and Duality in Nondifferentiable Multiobjective Programming Involving Directional Derivative
In this paper, we introduce a new class of generalized dI-univexity in which each component of the objective and constraint functions is directionally differentiable in its own direction di for a nondifferentiable multiobjective programming problem. Based upon these generalized functions, sufficient optimality conditions are established for a feasible point to be efficient and properly efficien...
متن کاملSecond - Order Duality for Nondifferentiable Multiobjective Programming Involving ( , Ρ ) - Univexity
The concepts of ( , ρ)-invexity have been given by Carsiti,Ferrara and Stefanescu[32]. We consider a second-order dual model associated to a multiobjective programming problem involving support functions and a weak duality result is established under appropriate second-order ( , ρ)-univexity conditions. AMS 2002 Subject Classification: 90C29, 90C30, 90C46.
متن کاملInternational Journal of Operations Research Vol
⎯ The aim of the present work is to characterize weakly efficient solution of multiobjective programming problems under the assumptions of α-invexity, using the concepts of critical point and Kuhn-Tucker stationary point for multiobjective programming problems. In this paper, we also extend the above results to the nondifferentiable multiobjective programming problems. The use of α-invex functi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European Journal of Operational Research
دوره 202 شماره
صفحات -
تاریخ انتشار 2010